
 
JAGAN NATH GUPTA INSTITUTE OF 

ENGINEERING & TECHNOLOGY 

 

 

LAB MANUAL  
 

4CS4-24: Linux Shell Programming Lab 
 
 
 
 

Week1 

 

Session-1 
a)Log into the system  
Sol : Login 

b)Use vi editor to create a file called myfile.txt which contains some text. 

Sol :  Vi mytable 

c)correct typing errors during creation. 

Sol: Practice vi editor commands 

d)Save the file 

Sol: :wq + Enter 

e)logout of the system 

Sol:  logout 

 
Note… Make Use of following commands: 

 

To Get Into and Out Of vi 

 

To Start vi 

 

To use vi on a file, type in vi filename. If the file named filename exists, then 
the first page (or screen) of the file will be displayed; if the file does not exist, 
then an empty file and screen are created into which you may enter text.   

*  vi filename  edit filename starting at line 1 
     

vi -r filename recover filename that was being edited when system crashed 
 
 
 

To Exit vi 

 

Usually the new or modified file is saved when you leave vi. However, it is also 
possible to quit vi without saving the file.  
Note: The cursor moves to bottom of screen whenever a colon (:) is typed. This 

type of command is completed by hitting the <Return> (or <Enter>) key.  



 

* :x<Return> quit vi, writing out modified file to file named in original invocation 

:wq<Return> quit vi, writing out modified file to file named in original invocation 

:q<Return> quit (or exit) vi 

* :q!<Return> quit vi even though latest changes have not been saved for this vi call 
 
 
 
 
 
 
 

 

Session-2 
a)Log into the system  
b)open the file created in session 1 

c)Add some text 

d)Change some text 

e)Delete some text 

f)Save the Changes 

Sol :  Practice the commands in Vi editor 

g)Logout of the system 

 

Note… Make Use of following commands 

 

Inserting or Adding Text 

 

The following commands allow you to insert and add text. Each of these 

commands puts the vi editor into insert mode; thus, the <Esc> key must be 

pressed to terminate the entry of text and to put the vi editor back into command 

mode.  

* i insert text before cursor, until <Esc> hit   

I insert text at beginning of current line, until <Esc> hit 

* a append text after cursor, until <Esc> hit  

A append text to end of current line, until <Esc> hit  

* o open and put text in a new line below current line, until <Esc> hit 

* O open and put text in a new line above current line, until <Esc> hit  
 
 

 

Changing Text 

 

The following commands allow you to modify text.  

*  

 

r  

 

replace single character under cursor (no <Esc> needed)  



R  
 

cw  
 
 

cNw  

 

replace characters, starting with current cursor position, until <Esc> hit   
change the current word with new text,  
starting with the character under cursor, until <Esc> hit   

change N words beginning with character under cursor, until <Esc> hit; 

e.g., c5w changes 5 words   

C  change (replace) the characters in the current line, until <Esc> hit 
   

cc  change (replace) the entire current line, stopping when <Esc> is hit 
     

change (replace) the next N lines, starting with the current 

line, 
Ncc

 
or

 
cNc

 stopping when <Esc> is hit 
 
 
 
 
 
 

 

Deleting Text 

 

The following commands allow you to delete text.  

* x  

Nx  

dw  
 

dNw 

 

delete single character under cursor   

delete N characters, starting with character under cursor 

delete the single word beginning with character under cursor 
  
delete N words beginning with character under cursor; 

e.g., d5w deletes 5 words   

  D  delete the remainder of the line, starting with current cursor position 
     

*  Dd  delete entire current line 
     

  Ndd or dNd  delete N lines, beginning with the current line; 

    e.g., 5dd deletes 5 lines 
 



Week2 

 

a)Log into the system  
b)Use the cat command to create a file containing the following data. Call it mytable 
use tabs to separate the fields.  
1425 Ravi 15.65 

4320 Ramu 26.27 

6830 Sita 36.15 

1450 Raju 21.86 

Sol: cat > mytable  

1425 Ravi 15.65 

4320 Ramu 26.27 

6830 Sita 36.15 

1450 Raju 21.86 

 

c)Use the cat command to display the file, mytable. 

Sol:  $cat mytable 

1425 Ravi 15.65 

4320 Ramu 26.27 

6830 Sita 36.15 

1450 Raju 21.86  
d) Use the vi command to correct any errors in the file, 
mytable. Sol: Verify the file with Vi editor Commannds  
e) Use the sort command to sort the file mytable according to the first field. Call the 
sorted file my table  
( same name) 

Sol: $sort +1 mytable > mytable 

f) Print the file mytable 

Sol: cat mytable  

1425 Ravi 15.65 

1450 Raju 21.86 

4320 Ramu 26.27 

6830 Sita 36.15 

 

g) Use the cut and paste commands to swap fields 2 and 3 of mytable. Call it my table 
(same name)  
Sol: $cut -f1 > mytab1 
$ cut –f 2 > mytab 2 
$cut –f 3 > my tab3  
$paste mytab3 mytab2 > mytab4 
$paste mytab1 mytab4 > 

mytable h)Print the new file, 
mytable Sol: $ cat mytable  

1425 15.65 Ravi 
1450 21.86 Raju 
4320 26.27 Ramu 
6830 36.15 Sita  



i)Logout of the system. 

 

Note… Make Use of following commands 

 

Cat:----  
 

cat to display a text file or to concatenate files  

cat file1 
 displays contents of file1 on the screen (or window) 
 

without any screen breaks.   
   

cat file1 file2 
 displays contents of file1 followed by file2 on the 
 

screen (or window) without any screen breaks.   
   

cat file1 file2 > file3  creates file3 containing file1 followed by file2 
    

 

 

Sort :----  
The "sort" command sorts information piped into it. There are several options 

that let you sort information in a variety of ways. 
ps -ef | sort 

 

The most important options in Sort : 

 

The following list describes the options and their arguments that may be used 
to control how sort functions. 

 

 - Forces sort to read from the standard input. Useful for reading from 
pipes and files simultaneously.

 -c Verifies that the input is sorted according to the other options specified 
on the command line. If the input is sorted correctly then no output is 
provided. If the input is not sorted then sort informs you of the situation. 
The message resembles this.

 

 sort: disorder: This line not in sorted 

order.

 

 
 -m Merges the sorted input. sort assumes the input is already 

sorted. sort normally merges input as it sorts. This option informs 
sort that the input is already sorted, thus sort runs much faster.

 -o output Sends the output to file output instead of the standard output. 
The output file may be the same name as one of the input files.

 -u Suppress all but one occurrence of matching keys. Normally, the entire 
line is the key. If field or character keys are specified, then the 
suppressing is done based on the keys.

 -y kmem Use kmem kilobytes of main memory to initially start the sorting. If more 

memory is needed, sort automatically requests it from the operating system.
 



 
The amount of memory allocated for the sort impacts the speed of the 
sort significantly. If no kmem is specified, sort starts with the default 
amount of memory (usually 32K). The maximum (usually 1 Megabyte) 
amount of memory may be allocated if needed. If 0 is specified for 
kmem, the minimum (usually 16K) amount of memory is allocated.  

 -z recsz Specifies the record size used to store each line. Normally the recsz is set 

to the longest line read during the sort phase. If the -c or -m options are specified, 

the sort phase is not performed and thus the record size defaults to a system size.

If this default size is not large enough, sort may abort during the merge 
phase. To alleviate this problem you can specify a recsz that will allow the 
merge phase to run without aborting.  



Week3 

Session1: 
a)Login to the system  
b)Use the appropriate command to determine your login shell 

Sol: $echo $SHELL 

sh 

c)Use the /etc/passwd file to verify the result of step b. 

Sol: $cat /etc/passwd 
 
 
 
 
 
 
 

 

d)Use the who command and redirect the result to a file called myfile1. Use the 

more command to see the contents of myfile1. Sol : $who > myfile1 | more 
 
 

 

User1 pts/0 Apr 23 10:43 
 

User2 pts/1 May 6 18:19 
 

e)Use the date and who commands in sequence (in one line) such that the output 

of date will display on the screen and the output of who will be redirected to a 

file called myfile2. Use the more command to check the contents of myfile2. Sol: 
$ date ; who > myfile2 

 

Fri Aug 9 16:47:32 IST 2008 

 

Cat myfile2 : 
 
 

User3 pts/2 Apr 25 10:43 
 

User4 pts/3 May 8 18:19 
 
 
 

 

Note… Make Use of following commands: 



Who :--- 
 

The "who" command lets you display the users that are currently logged into 
your Unix computer system. 

 

who  
This is the basic who command with no command-line arguments. It shows the names of 
users that are currently logged in, and may also show the terminal they're logged in on, 
and the time they logged in. 

 

who | more 

 

In this example the output of the who command is piped into the more command. This 

is useful when there are a lot of users logged into your computer system, and part of the 
output of the who command scrolls off the screen. See the more command for more 

examples. 

 
who -a 

 

The -a argument lists all available output of the who command for each user. 

 

Piping:--- 

 

To connect the output of the one command directly to the input of the other 

command. This is exactly what pipes do. The symbol for a pipe is the vertical bar | 

 

For example, typing  

 

% who | sort 

 

will give the same result as above, but quicker and cleaner. 

 

To find out how many users are logged on, type  

 

% who | wc -l  

http://www.devdaily.com/unix/edu/examples/more.shtml


Session 2: 
 

Input File : file1.dat : 

Unix is Multiuser OS 

Unix was developed by Brian Kernighan and KenThomson 
 

 

a)Write a sed command that deletes the first character in each line in a file. 

Sol: sed 's/^./ /‟ file1.dat  
nix is Multiuser OS 

nix was developed by Brian Kernighan and KenThomson 
 

 

b)Write a sed command that deletes the last character in each line in a file. 

Sol: sed '$s/.$//' file1.dat  
Unix is Multiuser O 

Unix was developed by Brian Kernighan and KenThomso 

 

c)Write a sed command that swaps the first and second words in each line in a file. 
sed -e 's/\([^ ]\+\) *\([^ ]\+\)/\2 \1/'  
sed 's/\([a-z]*\) \([a-z]*\)/\2 \1/' (Modified & working) 

 

(Substrings enclosed with "\(" and "\)" can be referenced with "\n" (n is a digit 
from 1 to 9) ) 

 

 

Note : Make use of following Link to know more about sed 

 

Ref : http://www.grymoire.com/Unix/Sed.html#uh-0  

http://www.grymoire.com/Unix/Sed.html#uh-0


Week4 

 

a)Pipe your /etc/passwd file to awk, and print out the home directory of each user. 
Sol: cat /etc/passwd | awk „ { print $7}‟  
b)Develop an interactive grep script that asks for a word and a file name and then tells 

how many lines 

contain that word. 

Sol: 

echo “Enter a word” 

read word 

echo “Enter the filename” 

read file 

nol=grep -c $word $file  
echo “ $nol times $word present in the $file” 

 

c)Part using awk 

Sol: 

echo “Enter a word” 

read word 

echo “Enter the filename” 

read file 

nol=awk „/$word/ { print NR }‟  Infile 

echo “ $nol times $word present in the $file” 
 

 

Note… Make Use of following commands: 

 

Grep: ---grep is one of many standard UNIX utilities. It searches files for 

specified words or patterns. First clear the screen, then type 
 
 

% grep science science.txt 

 

As you can see, grep has printed out each line containg the word science. 

 

Or has it ???? 

 

Try typing  

 

% grep Science science.txt 

 

The grep command is case sensitive; it distinguishes between Science and science. 

 

To ignore upper/lower case distinctions, use the -i option, i.e. type  



 

% grep -i science science.txt 

 

To search for a phrase or pattern, you must enclose it in single quotes (the 

apostrophe symbol). For example to search for spinning top, type 
 
 

% grep -i 'spinning top' science.txt 

 

Some of the other options of grep are: 

 

-v display those lines that do NOT match 
 

-n precede each matching line with the line number -

c print only the total count of matched lines 

 

Try some of them and see the different results. Don't forget, you can use more than 

one option at a time. For example, the number of lines without the words science 

or Science is 
 
 

% grep -ivc science science.txt 
 
 
 
 

 

Note: Make use of Following Link to know about Awk 

 

Ref : http://www.grymoire.com/Unix/Awk.html  

http://www.grymoire.com/Unix/Awk.html


Week5 

 

a)Write a shell script that takes a command –line argument and reports on whether it is 

directory, a file, or something else. 

Sol: 

echo " enter file" 

read str 

if test -f $str 

then echo "file exists n it is an ordinary file" 

elif test -d $str 

then echo "directory file" 

else 

echo "not exists"  
fi 

if test -c $str 

then echo "character device files" 

fi 

 

b)Write a shell script that accepts one or more file name as arguments and converts all 

of them to uppercase, provided they exist in the current directory. Sol: 
 

# get filename 

echo -n "Enter File Name : " 

read fileName 

 

# make sure file exits for reading 
if [ ! -f $fileName ]  
then  
echo "Filename $fileName does not 
exists" exit 1  
fi 

 

# convert uppercase to lowercase using tr command 
tr '[A-Z]' '[a-z]' < $fileName 

 

c)Write a shell script that determines the period for which a specified user is working on 

the system.  
Sol: 

echo “enter the login of the user” 

read name 

logindetails=`who|grep –w “$name” | grep “tty” 

if [ $? –ne 0 ] 

then 

echo “$name has not logged in yet” 

exit 

fi  



 
loginhours=`echo “$logindetails” | cut –c 26,27` 
loginminuts=`echo “$logindetails” | cut –c 29-30` 

hoursnow=‟date | cut –c 12,13` minnow =`date | 
cut –c 15,16`  
hour=`expr $loginhours - $hoursnow` 

min=`expr $loginminuts - $minnow` 

echo “ $name is working since $hour Hrs - $min Minuts”  



Week6 

 

a)Write a shell script that accepts a file name starting and ending line numbers 

as arguments and displays all the lines between the given line numbers. Sol: 
 

If [ $#  -ne 3 ] 

then 

echo “chech the arguments once” 

lastline=‟wc –l < $1‟ 

if [ $2 –lt $lastline –a $3  -le $lastline ] 

then 

nline=‟expr $3 -$2 + 1‟ 

echo “‟tail +$2 $1 | head -$nline‟”  
else 

echo “invalid range specification” 

fi 

fi 

 

b) Write a shell script that deletes all lines containing a specified word in one or 
more files supplied as arguments to it.  
Sol:  
if [ $# -lt 1] 
then  
echo “ Chech the arguments once” 
exit  
fi  
echo “Enter a 
word” read word  
for file in 
$* do  
grep –iv “$word” $file | tee 1> /dev/null 
done  
echo “ lines containing given word are deleted”  



Week7  
a)Write a shell script that computes the gross salary of a employee according to 
the following rules:  
i)If basic salary is < 1500 then HRA =10% of the basic and DA =90% of the 
basic. ii)If basic salary is >=1500 then HRA =Rs500 and DA=98% of the basic 
The basic salary is entered interactively through the key board.  
Sol: 

echo enter basic salary 

read sal 

a=0.1 

b=0.8 

echo $a 

echo "hra is"  
hra=`echo 0.1 \* $sal|bc` 

echo da is 

da=`echo 0.8\*$sal|bc` 

gsal=‟expr $hra + $da + $sal‟ 

echo $gsal 

 

b)Write a shell script that accepts two integers as its arguments and computers the 

value of first number raised to the power of the second number. Sol: 
 

If [ $# -ne 2 ] 

then 

echo “chech the number of arguments” 

count=1 

result=1 

if [ $2 –ge 0 ] 

then 

while [ $count –le $2 ] 

do 

result=`expr $result \* $1` 

count=`expr $count + 1` 

done 

fi 

fi  



Week8 

 

a)Write an interactive file-handling shell program. Let it offer the user the choice of 
copying, removing, renaming, or linking files. Once the user has made a choice, have the 

program ask the user for the necessary information, such as the file name, new name and 
so on.  
b)Write shell script that takes a login name as command – line argument and reports 

when that person logs in 

Sol:  
#Shell script that takes loginname as command line arg and reports when that person logs 
in.  
if [ $# -lt 1 ] 

then  
echo improper usage 

echo correct usage is: $0 username 

exit 

fi 

logname=$1 

while true 

do 

who|grep "$logname">/dev/null 

if [ $? = 0 ] 

then 

echo $logname has logged in 

echo "$logname">>sh01log.txt 

date >>sh01log.txt 

echo "Hi" > mesg.txt 

echo "$logname" >> mesg.txt 

echo "Have a Good Day" >> mesg.txt 

mail "$logname" < mesg.txt 

exit 

else 

sleep 60 fi  done 

 

c)Write a shell script which receives two file names as arguments. It should check 
whether the two file contents are same or not. If they are same then second file should 
be deleted.  
Sol:   

echo “enter first file name” 

read file1  

echo “ enter second file name” 

read file2  

cmp file1 file2 > file3 

if [ -z  $file1 ] rm file2 

fi   

echo “duplicate file deleted successfully”  



Week9  
a)Write a shell script that displays a list of all the files in the current directory to which 

the user has read, write and execute permissions. Sol: 
 

ls –l | grep “^.rwx” | cut –f 9  
b)Develop an interactive script that ask for a word and a file name and then tells how 
many times that word occurred in the file.  
c)Write a shell script to perform the following string operations: 

i)To extract a sub-string from a given string. 

ii)To find the length of a given string. 
 
 
 
 

Note: Make use of Following Link to know about  Shell Programming 

 

Ref : http://www.freeos.com/guides/lsst/ch02.html  

http://www.freeos.com/guides/lsst/ch02.html


 


