

Laboratory Manual

SDL-II

Mobile Application Development

(Android)

For

Third year Students (CSE)

FOREWORD

It is my great pleasure to present this laboratory manual for Third year

engineering students for the subject of SDl-II Mobile Application Development

(Android).

As a student, many of you may be wondering with some of the questions in your

mind regarding the subject and exactly what has been tried is to answer through

this manual.

As you may be aware that MGM has already been awarded with ISO 9001:2000

certification and it is our endure to technically equip our students taking the

advantage of the procedural aspects of ISO 9001:2000 Certification.

Faculty members are also advised that covering these aspects in initial stage

itself, will greatly relieve them in future as much of the load will be taken care

by the enthusiasm energies of the students once they are conceptually clear.

LABORATORY MANUAL CONTENTS

This manual is intended for the third year students of Computer Science and

Engineering in the subject of SDL-II Mobile Application Development (Android).

This manual typically contains practical/lab sessions related Android

implemented in java-eclipse covering various aspects related the subject to

enhanced understanding.

Students are advised to thoroughly go through this manual rather than only

topics mentioned in the syllabus as practical aspects are the key to

understanding and conceptual visualization of theoretical aspects covered in the

books.

Good Luck for your Enjoyable Laboratory Sessions

Vision of CSE Department:

To develop computer engineers with necessary analytical ability and human values who can

creatively design, implement a wide spectrum of computer systems for welfare of the society.

Mission of the CSE Department:

I. Preparing graduates to work on multidisciplinary platforms associated with their

professional position both independently and in a team environment.

II. Preparing graduates for higher education and research in computer science and engineering

enabling them to develop systems for society development.

Programme Educational Objectives:

Graduates will be able to

I. To analyze, design and provide optimal solution for Computer Science & Engineering and

multidisciplinary problems.

II. To pursue higher studies and research by applying knowledge of mathematics and

fundamentals of computer science.

III. To exhibit professionalism, communication skills and adapt to current trends by engaging

in lifelong learning.

Programme Outcomes (POs):

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals,
and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering

problems reaching substantiated conclusions using first principles of mathematics, natural sciences,

and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design

system components or processes that meet the specified needs with appropriate consideration for the

public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research

methods including design of experiments, analysis and interpretation of data, and synthesis of the

information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering activities with

an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the

professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions

in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable

development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms

of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in

diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering

community and with society at large, such as, being able to comprehend and write effective reports

and design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering

and management principles and apply these to one’s own work, as a member and leader in a team,

to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in

independent and life-long learning in the broadest context of technological change.

LAB INDEX

1. Introduction to android operating system and study of basic widgets.

2. Study of android lifecycle and demonstration of it.

3. Study of intents and types of intents

4. Study of list views and adapters

5. Study of dialog interfaces in android

6. Study of Sensors in android

7. Study of Services in android

8. Study of touch in android

9. Study of android database (SQlite)

10. Mini Project

 DOs and DON’Ts in Laboratory:

1. Make entry in the Log Book as soon as you enter the Laboratory.

2. All the students should sit according to their roll numbers starting from their left to

right.

3. All the students are supposed to enter the terminal number in the log book.

4. Do not change the terminal on which you are working.

5. All the students are expected to get at least the algorithm of the program/concept to

be implement.

6. Strictly follow the instructions given by the teacher/Lab Instructor.

Instruction for Laboratory Teachers

1. Submission related to whatever lab work has been completed should be done during

the next lab session.

2. The immediate arrangements for printouts related to submission on the day of

practical assignments.

3. Students should be taught for taking the printouts under the observation of lab

teacher.

4. The promptness of submission should be encouraged by way of marking and

evaluation patterns that will benefit the sincere students.

Evaluation and marking system:

Basic honesty in the evaluation and marking system is absolutely essential and

in the process impartial nature of the evaluator is required in the examination system to

become popular amongst the students. It is a wrong approach or concept to award the

students by way of easy marking to get cheap popularity among the students to which

they do not deserve. It is a primary responsibility of the teacher that right students

who are really putting up lot of hard work with right kind of intelligence are correctly

awarded.

The marking patterns should be justifiable to the students without any ambiguity and

teacher should see that `students are faced with unjust circumstances.

The assessment is done according to the directives of the Principal/ Vice-Principal/

Dean Academics.

Assignment 1

Aim: Introduction to android

Objective: Student should get the knowledge of android operating system

background.

Outcome: Student will be aware of the android operating system.

Android Architecture

Android operating system is a stack of software components which is roughly

divided into five sections and four main layers as shown below in the architecture

diagram.

Linux kernel

At the bottom of the layers is Linux - Linux 2.6 with approximately 115 patches.

This provides basic system functionality like process management, memory

management, device management like camera, keypad, display etc. Also, the

kernel handles all the things that Linux is really good at such as networking and

a vast array of device drivers, which take the pain out of interfacing to peripheral

hardware.

Libraries

On top of Linux kernel there is a set of libraries including open -source Web

browser engine WebKit, well known library libc, SQLite database which is a

useful repository for storage and sharing of application data, libraries to play and

record audio and video, SSL libraries responsible for Internet security etc.

Android Runtime

This is the third section of the architecture and available on the second layer

from the bottom. This section provides a key component called Dalvik Virtual

Machine which is a kind of Java Virtual Machine specially designed and

optimized for Android.

The Dalvik VM makes use of Linux core features like memory management and

multi-threading, which is intrinsic in the Java language. The Dalvik VM enables

every Android application to run in its own process, with its own instance of the

Dalvik virtual machine.

The Android runtime also provides a set of core libraries which enable Android

application developers to write Android applications using standard Java

programming language.

Application Framework

The Application Framework layer provides many higher-level services to

applications in the form of Java classes. Application developers are allowed to

make use of these services in their applications.

Applications

You will find all the Android application at the top layer. You will write your

application to be installed on this layer only. Examples of such applications are

Contacts Books, Browser, Games etc.

Android UI

An Android application user interface is everything that the user can see and

interact with. You have learned about the various layouts that you can use to

position your views in an activity. This chapter will give you detail on various

views.

A View is an object that draws something on the screen that the user can interact

with and a ViewGroupis an object that holds other View (and ViewGroup) objects

in order to define the layout of the user interface.

You define your layout in an XML file which offers a human-readable structure

for the layout, similar to HTML. For example, a simple vertical layout with a text

view and a button looks like this:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:orientation="vertical" >

<TextView android:id="@+id/text"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="I am a TextView" />

<Button android:id="@+id/button"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="I am a Button" />

http://schemas.android.com/apk/res/android

Android UI Controls

There are number of UI controls provided by Android that allow you to build the

graphical user interface for your app.

S.N. UI Control & Description

1

TextView

This control is used to display text to the user.

2

EditText

EditText is a predefined subclass of TextView that includes rich

editing capabilities.

3

AutoCompleteTextView

The AutoCompleteTextView is a view that is similar to EditText,

except that it shows a list of completion suggestions

automatically while the user is typing.

4

Button

A push-button that can be pressed, or clicked, by the user to

perform an action.

5

ImageButton

AbsoluteLayout enables you to specify the exact location of its

children.

6

CheckBox

An on/off switch that can be toggled by the user. You should

use checkboxes when presenting users with a group of

selectable options that are not mutually exclusive.

7

ToggleButton

An on/off button with a light indicator.

</LinearLayout>

http://www.tutorialspoint.com/android/android_textview_control.htm
http://www.tutorialspoint.com/android/android_edittext_control.htm
http://www.tutorialspoint.com/android/android_autocompletetextview_control.htm
http://www.tutorialspoint.com/android/android_button_control.htm
http://www.tutorialspoint.com/android/android_imagebutton_control.htm
http://www.tutorialspoint.com/android/android_checkbox_control.htm
http://www.tutorialspoint.com/android/android_togglebutton_control.htm

8

RadioButton

The RadioButton has two states: either checked or unchecked.

9

RadioGroup

A RadioGroup is used to group together one or more

RadioButtons.

10

ProgressBar

The ProgressBar view provides visual feedback about some

ongoing tasks, such as when you are performing a task in the

background.

11

Spinner

A drop-down list that allows users to select one value from a set.

12

TimePicker

The TimePicker view enables users to select a time of the day, in

either 24-hour mode or AM/PM mode.

13

DatePicker

The DatePicker view enables users to select a date of the day.

Create UI Controls

As explained in previous chapter, a view object may have a unique ID assigned

to it which will identify the View uniquely within the tree. The syntax for an ID,

inside an XML tag is:

To create a UI Control/View/Widget you will have to define a view/widget in the

layout file and assign it a unique ID as follows:

android:id="@+id/text_id"

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

http://www.tutorialspoint.com/android/android_radiobutton_control.htm
http://www.tutorialspoint.com/android/android_radiogroup_control.htm
http://www.tutorialspoint.com/android/android_progressbar.htm
http://www.tutorialspoint.com/android/android_spinner_control.htm
http://www.tutorialspoint.com/android/android_timepicker_control.htm
http://www.tutorialspoint.com/android/android_datepicker_control.htm
http://schemas.android.com/apk/res/android

Then finally create an instance of the Control object and capture it from the

layout, use the following:

Android Event Handling

Events are a useful way to collect data about a user's interaction with interactive

components of your app, like button presses or screen touch etc. The Android

framework maintains an event queue into which events are placed as they occur

and then each event is removed from the queue on a first-in, first-out (FIFO)

basis. You can capture these events in your program and take appropriate action

as per requirements.

There are following three concepts related to Android Event Management:

• Event Listeners: The View class is mainly involved in building up a Android GUI,

same View class provides a number of Event Listeners. The Event Listener is the

object that receives notification when an event happes.

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:orientation="vertical" >

<TextView android:id="@+id/text_id"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="I am a TextView" />

</LinearLayout>

TextView myText = (TextView) findViewById(R.id.text_id);

• Event Listeners Registration: Event Registration is the process by which an

Event Handler gets registered with an Event Listener so that the handler is called

when the Event Listener fires the event.

• Event Handlers: When an event happens and we have registered and event

listener fo the event, the event listener calls the Event Handlers, which is the

method that actually handles the event.

Event Listeners & Event Handlers

Event Handler Event Listener & Description

onClick()

OnClickListener()

This is called when the user either clicks or

touches or focuses upon any widget like button,

text, image etc. You will use onClick() event

handler to handle such event.

onLongClick()

OnLongClickListener()

This is called when the user either clicks or

touches or focuses upon any widget like button,

text, image etc. for one or more seconds. You will

use onLongClick() event handler to handle such

event.

onFocusChange()

OnFocusChangeListener()

This is called when the widget looses its focus ie.

user goes away from the view item. You will use

onFocusChange() event handler to handle such

event.

onKey()

OnFocusChangeListener()

This is called when the user is focused on the

item and presses or releases a hardware key on

 the device. You will use onKey() event handler to

handle such event.

onTouch()

OnTouchListener()

This is called when the user presses the key,

releases the key, or any movement gesture on the

screen. You will use onTouch() event handler to

handle such event.

onMenuItemClick()

OnMenuItemClickListener()

This is called when the user selects a menu item.

You will use onMenuItemClick() event handler to

handle such event.

There are many more event listeners available as a part of View class like

OnHoverListener, OnDragListener etc which may be needed for your application.

So I recommend to refer official documentation for Android application

development in case you are going to develop a sophisticated apps.

Exercise:

Key points to study: History, Versions, Architecture, IDE (Eclipse), SDK of

android.

Assignment 2

Aim: Study of UI in Android

Objective: Student should be able to design their own UI for android

application using XML.

Outcome: Student will demonstrate the basic application using UI in android.

Create Android Application

The first step is to create a simple Android Application using Eclipse IDE. Follow

the option

File → New → Project and finally select →Android New Application wizard from

the wizard list. Now name your application as HelloWorld using the wizard

window as follows:

Next, follow the instructions provided and keep all other entries as default till

the final step. Once your project is created successfully, you will have following

project screen:

Anatomy of Android Application

Before you run your app, you should be aware of a few directories and files in

the Android project:

S.N. Folder, File & Description

1
src

This contains the .java source files for your project. By default, it

 includes an MainActivity.java source file having an activity class

that runs when your app is launched using the app icon.

2

gen

This contains the .R file, a compiler-generated file that references

all the resources found in your project. You should not modify

this file.

3

bin

This folder contains the Android package files .apk built by the

ADT during the build process and everything else needed to run

an Android application.

4

res/drawable-hdpi

This is a directory for drawable objects that are designed for high-

density screens.

5

res/layout

This is a directory for files that define your app's user interface.

6

res/values

This is a directory for other various XML files that contain a

collection of resources, such as strings and colors definitions.

7

AndroidManifest.xml

This is the manifest file which describes the fundamental

characteristics of the app and defines each of its components.

Following section will give a brief overview few of the important application files.

The Main Activity File

The main activity code is a Java file MainActivity.java. This is the actual

application file which ultimately gets converted to a Dalvik executable and runs

your application. Following is the default code generated by the application

wizard for Hello World! application:

package com.example.helloworld;

import android.os.Bundle;

import android.app.Activity;

import android.view.Menu;

import android.view.MenuItem;

import android.support.v4.app.NavUtils;

public class MainActivity extends Activity {

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

}

@Override

public boolean onCreateOptionsMenu(Menu menu) {

getMenuInflater().inflate(R.menu.activity_main, menu);

return true;

}

}

Here, R.layout.activity_main refers to the activity_main.xml file located in the

res/layout folder. TheonCreate() method is one of many methods that are fi red

when an activity is loaded.

The Manifest File

Whatever component you develop as a part of your application, you must declare

all its components in a manifest file called AndroidManifest.xml which ressides

at the root of the application project directory. This file works as an interface

between Android OS and your application, so if you do not declare your

component in this file, then it will not be considered by the OS. For example, a

default manifest file will look like as following file:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.example.helloworld"

android:versionCode="1"

android:versionName="1.0" >

<uses-sdk

android:minSdkVersion="8"

http://schemas.android.com/apk/res/android

android:targetSdkVersion="15" />

<application

android:icon="@drawable/ic_launcher"

android:label="@string/app_name"

android:theme="@style/AppTheme" >

<activity

android:name=".MainActivity"

android:label="@string/title_activity_main" >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER"/>

</intent-filter>

</activity>

</application>

</manifest>

Here <application>...</application> tags enclosed the components related to the

application. Attributeandroid:icon will point to the application icon available

under res/drawable-hdpi. The application uses the image named

ic_launcher.png located in the drawable folders

The <activity> tag is used to specify an activity and android:name attribute

specifies the fully qualified class name of the Activity subclass and the

android:label attributes specifies a string to use as the label for the activity. You

can specify multiple activities using <activity> tags.

The action for the intent filter is named android.intent.action.MAIN to indicate

that this activity serves as the entry point for the application. The category for

the intent-filter is namedandroid.intent.category.LAUNCHER to indicate that the

application can be launched from the device's launcher icon.

The @string refers to the strings.xml file explained below. Hence,

@string/app_name refers to theapp_name string defined in the strings.xml fi le,

which is "HelloWorld". Similar way, other strings get populated in the application.

Following is the list of tags which you will use in your manifest file to specify

different Android application components:

<activity>elements for activities

<service> elements for services

<receiver> elements for broadcast receivers

<provider> elements for content providers

The Strings File

The strings.xml file is located in the res/values folder and it contains all the text

that your application uses. For example, the names of buttons, labels, default

text, and similar types of strings go into this file. This file is responsible for their

textual content. For example, a default strings file will look like as following file:

<resources>

<string name="app_name">HelloWorld</string>

<string name="hello_world">Hello world!</string>

<string name="menu_settings">Settings</string>

<string name="title_activity_main">MainActivity</string>

</resources>

The R File

The gen/com.example.helloworld/R.java file is the glue between the activity Java

files likeMainActivity.java and the resources like strings.xml. It is an

automatically generated file and you should not modify the content of the R.java

file. Following is a sample of R.java file:

/* AUTO-GENERATED FILE. DO NOT MODIFY.
*
* This class was automatically generated by the
* aapt tool from the resource data it found. It
* should not be modified by hand.
*/

package com.example.helloworld;

public final class R {

public static final class attr {
}
public static final class dimen {

public static final int padding_large=0x7f040002;
public static final int padding_medium=0x7f040001;
public static final int padding_small=0x7f040000;

}

public static final class drawable {
public static final int ic_action_search=0x7f020000;
public static final int ic_launcher=0x7f020001;

}
public static final class id {

public static final int menu_settings=0x7f080000;
}
public static final class layout {

public static final int activity_main=0x7f030000;
}
public static final class menu {

public static final int activity_main=0x7f070000;
}
public static final class string {

public static final int app_name=0x7f050000;
public static final int hello_world=0x7f050001;
public static final int menu_settings=0x7f050002;
public static final int title_activity_main=0x7f050003;

}
public static final class style {

public static final int AppTheme=0x7f060000;
}

}
The Layout File

The activity_main.xml is a layout file available in res/layout directory, that is

referenced by your application when building its interface. You will modify this

file very frequently to change the layout of your application. For your "Hello

World!" application, this file will have following content related to default layout:

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools"

android:layout_width="match_parent"

android:layout_height="match_parent" >

<TextView

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_centerHorizontal="true"

android:layout_centerVertical="true"

android:padding="@dimen/padding_medium"

android:text="@string/hello_world"

tools:context=".MainActivity" />

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools

</RelativeLayout>

This is an example of simple RelativeLayout which we will study in a separate

chapter. The TextView is an Android control used to build the GUI and it have

various attribuites like android:layout_width,android:layout_height etc which are

being used to set its width and height etc. The @string refers to the strings.xml

file located in the res/values folder. Hence, @string/hello_world refers to the

hello string defined in the strings.xml fi le, which is "Hello World!".

Running the Application

Let's try to run our Hello World! application we just created. I assume you had

created your AVD while doing environment setup. To run the app from Eclipse,

open one of your project's activity files and click Run icon from the toolbar.

Eclipse installs the app on your AVD and starts it and if everything is fine with

your setup and application, it will display following Emulator window:

Exercise:

Key points to study: Package explorer (Description about folders e.g. src, gen,res,

etc.), Description about XML file, Layouts.

1. Develop an application Hello world program description about tags used

in XML

2. Develop an application using basic controls like button, textview,

edittext etc. e.g. application for calculator.

Exercise 3

Aim: Study of Activity LifeCycle

Objective: Student should get the knowledge of android activity lifecycle.

Outcome: Student will demonstrate the Activity lifecycle through the

application.

Activity life cycle

States of an activity

An activity can be in different states depending how it is interacting with the

user. These states are described by the following table.

Table 1. Activity state

State Description

Running Activity is visible and interacts with the user.

Paused Activity is still visible but partially obscured, instance is running

but might be killed by the system.

Stopped Activity is not visible, instance is running but might be killed by

the system.

Killed Activity has been terminated by the system of by a call to

its finish() method.

The live cycle methods

The Android system defines a life-cycle for activities via predefined life-cycle

methods. The most important methods are:

Table 3. Important Activity lifecycle methods

Method Purpose

onCreate() Called then the activity is created. Used to initialize the activity, for

example create the user interface.

onResume() Called if the activity get visible again and the user starts interacting

with the activity again. Used to initialize fields, register listeners, bind

to services, etc.

onPause() Called once another activity gets into the foreground. Always called

before the activity is not visible anymore. Used to release resources

or save application data. For example you unregister listeners, intent

receivers, unbind from services or remove system service listeners.

onStop() Called once the activity is no longer visible. Time or CPU intensive

shut-down operations, such as writing information to a database

should be down in the onStop() method. This method is guaranteed

to be called as of API 11.

The life cycle of an activity with its most important methods is displayed in the

following diagram.

Android has more life cycle methods but not all of these methods are guaranteed

to be called. The onDestroy() method is not guaranteed to be called, hence you

typically do not use it.

Activity instance state

Instance state of an activity which is required to restore the activity to the state

in which the user left it. This is non-persistent application data that needs to

be passed between activities restarts during a configuration change to restore

user selections. The application is responsible for restoring its instance state.

Assume for example the user scrolled through a ListView with thousands of

items and the activity is recreated. Loosing the position in the list is annoying

for the user, hence the position should be restored.

The onSaveInstanceState() can be used to store this instance state as a Bundle.

A Bundle can contain primitive data types, arrays, String and objects which are

of the Parcelable or Serialisable type.

The persisted Bundle data is passed at restart of the activity to the onCreate()

method and onRestoreInstanceState() as parameter.

If you override onSaveInstanceState() and onRestoreInstanceState() you should

call the super implementation of it, because the default views of Android store

their data via a call to View.onSaveInstanceState from the

onSaveInstanceState() method of the activity. For example EditText stores its

content via the default call of this method.

The onRestoreInstanceState() or the onCreate() methods can be used to recreate

the instance scope of an activity if it is restarted.

Exercise:

Key point to study: Description about Activity LifeCycle

Develop an application demonstrating Activity LifeCycle

Assignment 4

Aim: Study of Intents in android

Objective: Student should know what is intent in android and whatare the

types of it.

Outcome: Student will develop a good application using the intents and its

properties efficiently

Intents and intent filter

What are intents?

Intents are asynchronous messages which allow application components to

request functionality from other Android components. Intents allow you to

interact with components from the same applications as well as with

components contributed by other applications. For example, an activity can

start an external activity for taking a picture.

Intents are objects of the android.content.Intent type. Your code can send them

to the Android system defining the components you are targeting. For example,

via the startActivity() method you can define that the intent should be used to

start an activity. An intent can contain data via a Bundle. This data can be used

by the receiving component. Starting activities. To start an activity, use the

method startActivity(intent). This method is defined on the Context object which

activity extends.

The following code demonstrates how you can start another activity via an

intent.

Sub-activities

Activities which are started by other Android activities are called sub-activities.

This wording makes it easier to describe which activity is meant.

Starting services

You can also start services via intents. Use the startService(Intent) method call

for that.

Start the activity connect to the

specified class

Intent i = new Intent(this, ActivityTwo.class);

startActivity(i);

Different types of intents

Android supports explicit and implicit intents. An application can define the

target component directly in the intent (explicit intent) or ask the Android system

to evaluate registered components based on the intent data (implicit intents).

Explicit Intents

Explicit intents explicitly define the component which should be called by the

Android system, by using the Java class as identifier.

The following shows how to create an explicit intent and send it to the Android

system. If the class specified in the intent represents an activity, the Android

system starts it.

Explicit intents are typically used within on application as the classes in an

application are controlled by the application developer.

Implicit Intents

Implicit intents specify the action which should be performed and optionally

data which provides content for the action.

For example, the following tells the Android system to view a webpage. All

installed web browsers should be registered to the corresponding intent data

via an intent filter.

Intent i = new Intent(this, ActivityTwo.class);

i.putExtra("Value1", "This value one for ActivityTwo ");

i.putExtra("Value2", "This value two ActivityTwo");

Intent i = new Intent(Intent.ACTION_VIEW,

Uri.parse("http://www.exercise.com"));

http://www.exercise.com/

If an implicit intent is sent to the Android system, it searches for all components

which are registered for the specific action and the fitting data type.

If only one component is found, Android starts this component directly. If

several components are identified by the Android system, the user will get a

selection dialog and can decide which component should be used for the intent.

Data transfer between activities

Data transfer to the target component: An intent contains certain header data,

e.g., the desired action, the type, etc. Optionally an intent can also contain

additional data based on an instance of the Bundle class which can be retrieved

from the intent via the getExtras() method.

You can also add data directly to the Bundle via the overloaded putExtra()

methods of the Intent objects. Extras are key/value pairs. The key is always of

type String. As value you can use the primitive data types (int, float, ...) plus

objects of type String, Bundle, Parceable and Serializable.

The receiving component can access this information via the getAction() and

getData() methods on the Intent object. ThisIntent object can be retrieved via the

getIntent() method.

The component which receives the intent can use the getIntent().getExtras()

method call to get the extra data. That is demonstrated in the following code

snippet.

startActivity(i);

Bundle extras = getIntent().getExtras();

if (extras == null) {

return;

}

Example: Using the share intent

Lots of Android applications allow you to share some data with other people,

e.g., the Facebook, G+, Gmail and Twitter application. You can send data to

one of these components. The following code snippet demonstrates the usage

of such an intent within your application.

Retrieving result data from a sub-activity

An activity can be closed via the back button on the phone. In this case the

finish() method is performed. If the activity was started with the

startActivity(Intent) method call, the caller requires no result or feedback from

the activity which now is closed.

If you start the activity with the startActivityForResult() method call, you expect

feedback from the sub-activity. Once the sub-activity ends, the

onActivityResult() method on the sub-activity is called and you can perform

actions based on the result.

// get data via the key

String value1 = extras.getString(Intent.EXTRA_TEXT);

if (value1 != null) {

// do something with the data

}

// this runs, for example, af ter a button click

Intent intent = new Intent(Intent.ACTION_SEND);

intent.setType("text/plain");

intent.putExtra(android.content.Intent.EXTRA_TEXT, "News for you!");

startActivity(intent);

In the startActivityForResult() method call you can specify a result code to

determine which activity you started. This result code is returned to you. The

started activity can also set a result code which the caller can use to determine

if the activity was canceled or not.

T he sub-activity uses the finish() method to create a new intent and to put data

into it. It also sets a result via the setResult()method call.

The following example code demonstrates how to trigger an intent with the

startActivityForResult() method.

If you use the startActivityForResult() method, then the started activity is called

a sub-activity.

If the sub-activity is finished, it can send data back to its caller via an Intent.

This is done in the finish() method.

Once the sub-activity finishes, the onActivityResult() method in the calling

activity is called.

public void onClick(View view) {

Intent i = new Intent(this, ActivityTwo.class);

i.putExtra("Value1", "This value one for ActivityTwo ");

i.putExtra("Value2", "This value two ActivityTwo");

// set the request code to any code you like,

// you can identif y the callback via this code

startActivityForResult(i, REQUEST_CODE);

}

@Override

public void finish() {

// Prepare data intent

Intent data = new Intent();

data.putExtra("returnKey1", "Swinging on a star. ");

data.putExtra("returnKey2", "You could be better then you are. ");

// Activity f inished ok, return the data

setResult(RESULT_OK, data);

super.finish();

}

@Override

protected void onActivityResult(int requestCode, int resultCode, Intent data) {

Defining intent filters

Intent filter

Intents are used to signal to the Android system that a certain event has

occurred. Intents often describe the action which should be performed and

provide data upon which such an action should be done. For example, your

application can start a browser component for a certain URL via an intent. This

is demonstrated by the following example.

But how does the Android system identify the components which can react to

a certain intent?

A component can register itself via an intent f ilter for a specific action and

specific data. An intent filter specifies the types of intents to which an activity,

service, or broadcast receiver can respond to by declaring the capabilities of a

component.

if (resultCode == RESULT_OK && requestCode == REQUEST_CODE) {

if (data.hasExtra("returnKey1")) {

Toast.makeText(this, data.getExtras().getString("returnKey1"),

Toast.LENGTH_SHORT).show();

}

}

}

String url = "http://www.exercise.com";

Intent i = new Intent(Intent.ACTION_VIEW);

i.setData(Uri.parse(url));

startActivity(i);

http://www.exercise.com/

Android components register intent filters either statically in the

AndroidManifest.xml or in case of a broadcast receiver also dynamically via code.

An intent filter is defined by its category, action and data filters. It can also

contain additional meta-data.

If an intent is sent to the Android system, the Android platform runs a receiver

determination. It uses the data included in the intent. If several components

have registered for the same intent filter, the user can decide which component

should be started.

Defining intent filter

You can register your Android components via intent filters for certain events.

If a component does not define one, it can only be called by explicit intents.

This chapter gives an example for registering a component for an intent. The

key for this registration is that your component registers for the correct action,

mime-type and specifies the correct meta-data.

If you send such an intent to your system, the Android system determines all

registered Android components for this intent. If several components have

registered for this intent, the user can select which one should be used.

Exercise:

Key points to study: Description about Intent. Types of Intents.

Develop an application which demonstrate the efficient use of explicit and

implicit intents

Assignment 5

Aim: Study of Adapters and Views (List View)

Objective: Student should use the adapters and list views in their applications

efficiently.

Outcome: Student will demonstrate the efficient use of List views and adapters

through the application.

Android and Lists

Using lists in Android

The display of elements in a list is a very common pattern in mobile
applications. The user sees a list of items and can scroll through them. Such
an activity is depicted in the following picture.

Typically the user interacts with the list via the action bar, for example, via a
refresh button. Individual list items can be selected. This selection can update

the action bar or can trigger a detailed screen for the selection. The following

graphic sketches that. On the selection of a list item another activity is started.

Views for handling lists

A ndroid provides the ListView and the ExpandableListView classes which is
capable of displaying a scrollable list of items.

The ExpandableListView class supports a grouping of items.

Possible input types for lists

The input to the list (items in the list) can be arbitrary Java objects. The adapter
extracts the correct data from the data object and assigns this data to the views
in the row of the ListView.

These items are typically called the data model of the list. An adapter can
receive data as input.

Adapters

A n adapter manages the data model and adapts it to the individual entries in
the widget. An adapter extends the BaseAdapterclass.

Every line in the widget displaying the data consists of a layout which can be

as complex as you want. A typical line in a list has an image on the left side
and two text lines in the middle as depicted in the following graphic.

A layout file for a such a line might look like the following.

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"

android:layout_height="?android:attr/listPreferredItemHeight"

android:padding="6dip" >

<ImageView

android:id="@+id/icon"

android:layout_width="wrap_content"

android:layout_height="fill_parent"

android:layout_alignParentBottom="true"

android:layout_alignParentTop="true"

android:layout_marginRight="6dip"

android:contentDescription="TODO"

android:src="@drawable/ic_launcher" />

<TextView

android:id="@+id/secondLine"

android:layout_width="fill_parent"

android:layout_height="26dip"

android:layout_alignParentBottom="true"

android:layout_alignParentRight="true"

android:layout_toRightOf="@id/icon"

android:ellipsize="marquee"

http://schemas.android.com/apk/res/android

T he adapter would inflate the layout for each row in its getView() method and

assign the data to the individual views in the row.

The adapter is assigned to the ListView via the setAdapter method on the
ListView object.

Filtering and sorting

Filtering and sorting of the data is handled by the adapter. You need to
implement the logic in your custom adapter implementation.

Data updates in the adapter

The notifyDataSetChanged() method on the adapter is called if the data has
changed or if new data is available.

The notifyDataSetInvalidated() method is called if the data is not available
anymore.

android:singleLine="true"

android:text="Description"

android:textSize="12sp" />

<TextView

android:id="@+id/firstLine"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:layout_above="@id/secondLine"

android:layout_alignParentRight="true"

android:layout_alignParentTop="true"

android:layout_alignWithParentIfMissing="true"

android:layout_toRightOf="@id/icon"

android:gravity="center_vertical"

android:text="Example application"

android:textSize="16sp" />

</RelativeLayout>

Listener

To react to selections in the list, set an OnItemClickListener to your ListView.

Default adapter

Default platform adapter

A ndroid provides default adapter implementations; the most important are
ArrayAdapter and CursorAdapter.

ArrayAdapter can handle data based on Arrays or java.util.List.

SimpleCursorAdapter can handle database related data.

Using ArrayAdapter

The ArrayAdapter class can handle a list or array of Java objects as input. Every
Java object is mapped to one row. By default, it maps the toString() method of
the object to a view in the row layout.

You can define the ID of the view in the constructor of the ArrayAdapter
otherwise the android.R.id.text1 ID is used as default.

The ArrayAdapter class allows to remove all elements in its underlying data
structure with the clear() method call. You can then add new elements via the
add() method or a Collection via the addAll() method.

You can also directly modify the underlying data structure and call the

notifyDataSetChanged() method on the adapter to notify it about the changes
in data.

listView.setOnItemClickListener(new OnItemClickListener() {

@Override

public void onItemClick(AdapterView<?> parent, View view,

int position, long id) {

Toast.makeText(getApplicationContext(),

"Click ListItem Number " + position, Toast.LENGTH_LONG)

.show();

}

});

Warning

If you want to change the data in your adapter, the underlying data structure

must support this operation. This is, for example, the case for the ArrayList class,

but not for arrays.

ListView example with ArrayAdapter

The following listing shows a layout file called

activity_listviewexampleactivity.xml which includes a ListView.

The following example shows the usage of the ListView view in an activity. It
uses a default layout from the Android platform for the row layout. It also
demonstrates the removal of list items and uses animations for the removal.

package com.exerciseneme.android.listview.withanimation;

public class ListViewExampleActivity extends Activity {

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_listviewexampleactivity);

final ListView listview = (ListView) findViewById(R.id.listview);

String[] values = new String[] { "Android", "iPhone", "WindowsMobile",

"Blackberry", "WebOS", "Ubuntu", "Windows7", "Max OS X",

"Linux", "OS/2", "Ubuntu", "Windows7", "Max OS X", "Linux",

"OS/2", "Ubuntu", "Windows7", "Max OS X", "Linux", "OS/2",

"Android", "iPhone", "WindowsMobile" };

final ArrayList<String> list = new ArrayList<String>();

<ListView xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/listview"

android:layout_width="wrap_content"

android:layout_height="wrap_content" />

http://schemas.android.com/apk/res/android

for (int i = 0; i < values.length; ++i) {

list.add(values[i]);

}

final StableArrayAdapter adapter = new StableArrayAdapter(this,

android.R.layout.simple_list_item_1, list);

listview.setAdapter(adapter);

listview.setOnItemClickListener(new AdapterView.OnItemClickListener() {

@Override

public void onItemClick(AdapterView<?> parent, final View view,

int position, long id) {

final String item = (String) parent.getItemAtPosition(position);

view.animate().setDuration(2000).alpha(0)

.withEndAction(new Runnable() {

@Override

public void run() {

list.remove(item);

adapter.notifyDataSetChanged();

view.setAlpha(1);

}

});

}

});

}

private class StableArrayAdapter extends ArrayAdapter<String> {

HashMap<String, Integer> mIdMap = new HashMap<String, Integer>();

public StableArrayAdapter(Context context, int textViewResourceId,

List<String> objects) {

super(context, textViewResourceId, objects);

for (int i = 0; i < objects.size(); ++i) {

mIdMap.put(objects.get(i), i);

}

Exercise:

Key points to study: Description of List View and Types of adapters

Develop an application for the demonstrate ListView creation.

}

@Override

public long getItemId(int position) {

String item = getItem(position);

return mIdMap.get(item);

}

@Override

public boolean hasStableIds() {

return true;

}

}

}

Assignment 6

Aim: Study of Dialogs in android

Objective: Student should understand the concept of dialogs and alert dialogs

in android.

Outcome: Student will demonstrate the use of dialogs in applications

Android Dialogs

Using dialogs in Android

Y ou can open dialogs from your activity via the showDialog(int) method. Dialogs
which are created via an activity are bound to this activity. A dialog gets the
focus until the user closes it.

The Dialog class is the base class for dialogs. Typically you use one of its
subclasses, e.g., AlertDialog, ProgressDialog,DatePickerDialog or
TimePickerDialog.

I f the dialog is displayed, the Android system calls the onCreateDialog(int)

method. In this method you instantiate the correct dialog based on the input

parameter. You should always create a dialog from the onCreateDialog(int)

method as in this case the Android system manages the dialog for you.

// constant for identif ying the dialog

private static final int DIALOG_ALERT = 10;

public void onClick(View view) {

showDialog(DIALOG_ALERT);

}

@Override

protected Dialog onCreateDialog(int id) {

switch (id) {

case DIALOG_ALERT:

Builder builder = new AlertDialog.Builder(this);

onCreateDialog(int) is only called the first time if you want to later influence the

dialog to use the optionalonPrepareDialog(int, Dialog) method.

ProgressDialog

A ndroid also provides a ProgressDialog, which can be opened via a
ProgressDialog.open() method call.

Custom dialogs

If you want to create your custom dialogs, you create a layout file for the dialog.
This layout file is assigned to the dialog via thesetContentView() method.

builder.setMessage("This will end the activity");

builder.setCancelable(true);

builder.setPositiveButton("I agree", new OkOnClickListener());

builder.setNegativeButton("No, no", new CancelOnClickListener());

AlertDialog dialog = builder.create();

dialog.show();

}

return super.onCreateDialog(id);

}

private final class CancelOnClickListener implements

DialogInterface.OnClickListener {

public void onClick(DialogInterface dialog, int which) {

Toast.makeText(getApplicationContext(), "Activity will continue",

Toast.LENGTH_LONG).show();

}

}

private final class OkOnClickListener implements

DialogInterface.OnClickListener {

public void onClick(DialogInterface dialog, int which) {

AlertExampleActivity.this.finish();

}

}

You would then use the dialog.findViewById() to find the elements in your
layout and assign values to it.

The title of the dialog can be set via the setTitle() method.

Exercise:

Develop an application and Displaying an alert dialog

Adding a dialog to your activity

The following demonstrates the usage of the AlertDialog dialog in an existing

activity. An instance of this class can be created by the builder pattern, e.g.,
you can chain your method calls.

Ensure that the layout file of your activity contains a button with the
android:onClick pointing to a method called onClick.

Change the code of your activity to the following.

// constant for identif ying the dialog

private static final int DIALOG_ALERT = 10;

// existing code.....

// adjust this method if you have more than

// one button pointing to this method

public void onClick(View view) {

showDialog(DIALOG_ALERT);

}

@Override

protected Dialog onCreateDialog(int id) {

switch (id) {

case DIALOG_ALERT:

Builder builder = new AlertDialog.Builder(this);

builder.setMessage("This ends the activity");

builder.setCancelable(true);

builder.setPositiveButton("I agree", new OkOnClickListener());

builder.setNegativeButton("No, no", new CancelOnClickListener());

Test dialog usage

If you run your application and click the corresponding button, your dialog is
displayed.

AlertDialog dialog = builder.create();

dialog.show();

}

return super.onCreateDialog(id);

}

private final class CancelOnClickListener implements

DialogInterface.OnClickListener {

public void onClick(DialogInterface dialog, int which) {

Toast.makeText(getApplicationContext(), "Cancle selected, activity continues",

Toast.LENGTH_LONG).show();

}

}

private final class OkOnClickListener implements

DialogInterface.OnClickListener {

public void onClick(DialogInterface dialog, int which) {

AlertExampleActivity.this.finish();

}

}

Assignment 7

Aim: Developing application for TextToSpeech Converter

Objective: Student should learn the advanced application development.

Outcome: Student will develop the TextToSpeech converter in android.

TextToSpeech Converter

Android allows you convert your text into voice. Not only you can convert it but

it also allows you to speak text in variety of different languages.

Android provides TextToSpeech class for this purpose. In order to use this class,

you need to instantiate an object of this class and also specify the initListnere.

Its syntax is given below:

private EditText write;

ttobj=new TextToSpeech(getApplicationContext(), new

TextToSpeech.OnInitListener() {

@Override

public void onInit(int status) {

}

}

);

In this listener , you have to specify the properties for TextToSpeech object , such

as its language ,pitch e.t.c. Language can be set by calling setLanguage() method.

Its syntax is given below:

ttobj.setLanguage(Locale.UK);

The method setLanguage takes an Locale object as parameter. The list of some

of the locales availaible are given below:

Sr.No Locale

1 US

2 CANADA_FRENCH

3 GERMANY

4 ITALY

5 JAPAN

6 CHINA

Once you have set the language, you can call speak method of the class to speak

the text. Its syntax is given below:

ttobj.speak(toSpeak, TextToSpeech.QUEUE_FLUSH, null);

Apart from the speak method, there are some other methods availaible in the

TextToSpeech class. They are listed below:

Sr.No Method & description

1

addSpeech(String text, String filename)

This method adds a mapping between a string of text and a

sound file.

2

getLanguage()

This method returns a Locale instance describing the

language.

3

isSpeaking()

This method checks whether the TextToSpeech engine is busy

speaking.

4

setPitch(float pitch)

This method sets the speech pitch for the TextToSpeech

engine.

5
setSpeechRate(float speechRate)

This method sets the speech rate.

6

shutdown()

This method releases the resources used by the TextToSpeech

engine.

7
stop()

This method stop the speak.

Example

The below example demonstrates the use of TextToSpeech class. It crates a basic

application that allows you to set write text and speak it.

To experiment with this example , you need to run this on an actual device.

Steps Description

1

You will use Eclipse IDE to create an Android application and

name it as TextToSpeech under a package

com.example.texttospeech. While creating this project, make

sure you Target SDK and Compile With at the latest version of

Android SDK to use higher levels of APIs.

2 Modify src/MainActivity.java file to add TextToSpeech code.

3
Modify layout XML file res/layout/activity_main.xml add any

GUI component if required.

4
Modify res/values/string.xml file and add necessary string

components.

5
Run the application and choose a running android device and

install the application on it and verify the results.

Exercise: Develop an application for TextToSpeech converter.

package com.example.texttospeech;

import java.util.Locale;

import java.util.Random;

import android.app.Activity;

import android.os.Bundle;

import android.speech.tts.TextToSpeech;

import android.view.Menu;

import android.view.View;

import android.widget.EditText;

import android.widget.Toast;

public class MainActivity extends Activity {

TextToSpeech ttobj;

private EditText write;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

write = (EditText)findViewById(R.id.editText1);

ttobj=new TextToSpeech(getApplicationContext(),

new TextToSpeech.OnInitListener() {

@Override

public void onInit(int status) {

if(status != TextToSpeech.ERROR){

ttobj.setLanguage(Locale.UK);

}

}

});

}

@Override

public void onPause(){

if(ttobj !=null){

ttobj.stop();

ttobj.shutdown();

}

super.onPause();

}

@Override

public boolean onCreateOptionsMenu(Menu menu) {

// Inflate the menu; this adds items to the action bar if it is present.

getMenuInflater().inflate(R.menu.main, menu);

return true;

}

public void speakText(View view){

String toSpeak = write.getText().toString();

Toast.makeText(getApplicationContext(), toSpeak,

Toast.LENGTH_SHORT).show();

ttobj.speak(toSpeak, TextToSpeech.QUEUE_FLUSH, null);

}

}

Here is the content of activity_main.xml

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools"

android:layout_width="match_parent"

android:layout_height="match_parent"

android:paddingBottom="@dimen/activity_vertical_margin"

android:paddingLeft="@dimen/activity_horizontal_margin"

android:paddingRight="@dimen/activity_horizontal_margin"

android:paddingTop="@dimen/activity_vertical_margin"

tools:context=".MainActivity" >

<Button

android:id="@+id/button1"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_alignParentBottom="true"

android:layout_alignParentRight="true"

android:layout_marginBottom="188dp"

android:layout_marginRight="67dp"

android:onClick="speakText"

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools

android:text="@string/text1" />

<EditText

android:id="@+id/editText1"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_above="@+id/button1"

android:layout_centerHorizontal="true"

android:layout_marginBottom="81dp"

android:ems="10" >

<requestFocus />

</EditText>

<TextView

android:id="@+id/textView1"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_alignParentTop="true"

android:layout_centerHorizontal="true"

android:layout_marginTop="20dp"

android:text="@string/write"

android:textAppearance="?android:attr/textAppe aranceLarge" />

</RelativeLayout>

Here is the content of Strings.xml.

<?xml version="1.0" encoding="utf-8"?>

<resources>

<string name="app_name">TextToSpeech</string>

<string name="action_settings">Settings</string>

<string name="hello_world">Hello world!</string>

<string name="text1">Text to Speech</string>

<string name="write">Write Text</string>

</resources>

Here is the content of AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.example.texttospeech"

android:versionCode="1"

android:versionName="1.0" >

<uses-sdk

android:minSdkVersion="8"

android:targetSdkVersion="17" />

<application

android:allowBackup="true"

android:icon="@drawable/ic_launcher"

android:label="@string/app_name"

android:theme="@style/AppTheme" >

<activity

android:name="com.example.texttospeech.MainActivity"

android:label="@string/app_name" >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

</application>

</manifest>

http://schemas.android.com/apk/res/android

Let's try to run your TextToSpeech application. I assume you have connected

your actual Android Mobile device with your computer. To run the app from

Eclipse, open one of your project's activity files and click Run icon from the

toolbar. Before starting your application, Eclipse will display following window to

select an option where you want to run your Android application.

Select your mobile device as an option and then check your mobile device which

will display following screen.

Now just type some text in the field and click on the text to speech button below.

A notification would appear and text will be spoken. It is shown in the image

below:

Now type something else and repeat the step again with different locale. You will

again hear sound. This is shown below:

Assignment 8

Aim: To Study the Telephony (SmsManager) in android.

Objective: Student should know how to use the telephony package in android.

Outcome: Student will develop an application for sending sms using

SmsManager in android.

SmsManager

There are following two ways to send SMS using Android device:

Using SmsManager to send SMS

Using Built-in Intent to send SMS

Using SmsManager to send SMS

The SmsManager manages SMS operations such as sending data to the given

mobile device. You can create this object by calling the static method

SmsManager.getDefault() as follows:

SmsManager smsManager = SmsManager.getDefault();

Once you have SmsManager object, you can use sendDataMessage() method to

send SMS at the specified mobile number as below:

smsManager.sendTextMessage("phoneNo", null, "SMS text", null, null);

Apart from the above method, there are few other important functions available

in SmsManager class. These methods are listed below:

S.N. Method & Description

1

ArrayList<String> divideMessage(String text)

This method divides a message text into several fragments, none

bigger than the maximum SMS message size.

2

static SmsM anager getDefault()

This method is used to get the default instance of the

SmsManager

3

void sendDataMessage(String destinationAddress, String

scAddress, short destinationPort, byte[] data, PendingIntent

sentIntent, PendingIntent deliveryIntent)

This method is used to send a data based SMS to a specific

application port.

4

void sendMultipartTextMessage(String destinationAddress,

String scAddress, ArrayList<String> parts,

ArrayList<PendingIntent> sentIntents,

ArrayList<PendingIntent> deliveryIntents)

Send a multi-part text based SMS.

5

void sendTextMessage(String destinationAddress, String

scAddress, String text, PendingIntent sentIntent,

PendingIntent deliveryIntent)

Send a text based SMS.

Example

Following example shows you in practical how to use SmsManager object to send

an SMS to the given mobile number.

To experiment with this example, you will need actual Mobile device equipped

with latest Android OS, otherwise you will have to struggle with emulator which

may not work.

Step Description

1
You will use Eclipse IDE to create an Android application and

name it as SendSMSDemounder a

 package com.example.sendsmsdemo. While creating this

project, make sure youTarget SDK and Compile With at the

latest version of Android SDK to use higher levels of APIs.

2
Modify src/MainActivity.java file and add required code to take

care of sending email.

3

Modify layout XML file res/layout/activity_main.xml add any

GUI component if required. I'm adding a simple GUI to take

mobile number and SMS text to be sent and a simple button to

send SMS.

4
Modify res/values/strings.xml to define required constant

values

5 Modify AndroidManifest.xml as shown below

6

Run the application to launch Android emulator and verify the

result of the changes done in the aplication.

Exercise:

Key Points to study: telephony, SmsManager in android.

Develop an application for the sending sms from application.

Assignment 9

Aim: To study the database in android (SQLite)

Objective: Student should know the database development in android

Outcome: Student will demonstrate the database development using SQLite

for basic queries.

SQLite and Android

What is SQLite?

SQLite is an Open Source database. SQLite supports standard relational

database features like SQL syntax, transactions and prepared statements. The

database requires limited memory at runtime (approx. 250 KByte) which makes

it a good candidate from being embedded into other runtimes.

SQLite supports the data types TEXT (similar to String in Java), INTEGER

(similar to long in Java) and REAL (similar to double in Java).

All other types must be converted into one of these fields before getting saved in

the database. SQLite itself does not validate if the types written to the columns

are actually of the defined type, e.g. you can write an integer into a string column

and vice versa.

SQLite in Android

SQLite is embedded into every Android device. Using an SQLite database in

Android does not require a setup procedure or administration of the database.

You only have to define the SQL statements for creating and updating the

database. Afterwards the database is automatically managed for you by the

Android platform.

Access to a SQLite database involves accessing the file system. This can be slow.

Therefore it is recommended to perform database operations asynchronously.

I f your application creates a database, this database is by default saved in the

directory DATA/data/APP_NAME/databases/FILENAME.

The parts of the above directory are constructed based on the following rules.

DATA is the path which theEnvironment.getDataDirectory() method returns.

APP_NAME is your application name. FILENAME is the name you specify in your

application code for the database.

SQLite architecture

Packages

The android.database package contains all necessary classes for working with

databases. The android.database.sqlitepackage contains the SQLite specific

classes.

Creating and updating database with SQLiteOpenHelper

To create and upgrade a database in your Android application you create a

subclass of the SQLiteOpenHelper class. In the constructor of your subclass you

call the super() method of SQLiteOpenHelper, specifying the database name and

the current database version.

In this class you need to override the following methods to create and update

your database.

onCreate() - is called by the framework, if the database is accessed but not yet

created.

onUpgrade() - called, if the database version is increased in your application

code. This method allows you to update an existing database schema or to drop

the existing database and recreate it via the onCreate() method.

Both methods receive an SQLiteDatabase object as parameter which is the Java

representation of the database.

The SQLiteOpenHelper class providest the getReadableDatabase() and

getWriteableDatabase() methods to get access to anSQLiteDatabase object; either

in read or write mode.

The database tables should use the identifier _id for the primary key of the table.

Several Android functions rely on this standard.

Note:

It is good practice to create a separate class per table. This class defines static

onCreate() andonUpgrade() methods. These methods are called in the

corresponding methods of SQLiteOpenHelper. This way your implementation of

SQLiteOpenHelper stays readable, even if you have several tables.

SQLiteDatabase

SQLiteDatabase is the base class for working with a SQLite database in Android

and provides methods to open, query, update and close the database.

More specifically SQLiteDatabase provides the insert(), update() and delete()

methods.

In addition it provides the execSQL() method, which allows to execute an SQL

statement directly.

The object ContentValues allows to define key/values. The key represents the

table column identifier and the value represents the content for the table record

in this column. ContentValues can be used for inserts and updates of database

entries.

Queries can be created via the rawQuery() and query() methods or via the

SQLiteQueryBuilder class .

rawQuery() directly accepts an SQL select statement as input.

query() provides a structured interface for specifying the SQL query.

SQLiteQueryBuilder is a convenience class that helps to build SQL queries.

rawQuery() Example

The following gives an example of a rawQuery() call.

Cursor cursor = getReadableDatabase().

rawQuery("select * from todo where _id = ?", new String[] { id });

query() Example

The following gives an example of a query() call.

return database.query(DATABASE_TABLE, new String[] { KEY_ROWID,

KEY_CATEGORY, KEY_SUMMARY, KEY_DESCRIPTION }, null, null, null,

null, null);

The method query() has the following parameters.

Table 1. Parameters of the query() method

Parameter Comment

String dbName The table name to compile the query against.

String[]

columnNames

A list of which table columns to return. Passing "null"

will return all columns.

String

whereClause

Where-clause, i.e. filter for the selection of data, null will

select all data.

String[]

selectionArgs

You may include ?s in the "whereClause"". These

placeholders will get replaced by the values from the

selectionArgs array.

String[] groupBy A filter declaring how to group rows, null will cause the

rows to not be grouped.

String[] having Filter for the groups, null means no filter.

String[] orderBy Table columns which will be used to order the data, null

means no ordering.

If a condition is not required you can pass null, e.g. for the group by clause.

The "whereClause" is specified without the word "where", for example a "where"

statement might look like: "_id=19 and summary=?".

If you specify placeholder values in the where clause via ?, you pass them as the

selectionArgs parameter to the query.

Cursor

A query returns a Cursor object. A Cursor represents the result of a query and

basically points to one row of the query result. This way Android can buffer the

query results efficiently; as it does not have to load all data into memory.

To get the number of elements of the resulting query use the getCount() method.

To move between individual data rows, you can use the moveToFirst() and

moveToNext() methods. The isAfterLast()method allows to check if the end of the

query result has been reached.

Cursor provides typed get*() methods, e.g. getLong(columnIndex),

getString(columnIndex) to access the column data for the current position of the

result. The "columnIndex" is the number of the column you are accessing.

Cursor also provides the getColumnIndexOrThrow(String) method which allows

to get the column index for a column name of the table.

A Cursor needs to be closed with the close() method call.

ListViews, ListActivities and SimpleCursorAdapter

ListViews are Views which allow to display a list of elements. ListActivities are

specialized activities which make the usage of ListViews easier. To work with

databases and ListViews you can use the SimpleCursorAdapter. The

SimpleCursorAdapter allows to set a layout for each row of the ListViews.

You also define an array which contains the column names and another array

which contains the IDs of Views which should be filled with the data.

The SimpleCursorAdapter class will map the columns to the Views based on the

Cursor passed to it. To obtain the Cursor you should use the Loader class.

Exercise:

Develop an application for the demonstration of basic queries (create table,

insert, select, update, delete) in SQLite.

Assignment 10

Aim: Develop an application using all components of android and

database.

Objective: Student should able to develop and deploy the android application.

Outcome: Student will develop the android application using database

(SQlite/ External, MySQL) and web services.

Assignment: Student should come with their ideas and discuss with faculty and

develop application on android. Application with web service and database has

more weightage and with all necessary database operations.

Student should use maximum UI components to make UI better and user-

friendly.

	Android Architecture
	Assignment 2 Aim: Study of UI in Android
	Create Android Application
	Exercise:
	Activity life cycle States of an activity
	The live cycle methods
	Activity instance state
	Exercise:
	Intents and intent filter
	Data transfer between activities
	Defining intent filters
	Exercise:
	Android and Lists
	Default adapter
	Exercise:
	Android Dialogs
	Exercise:
	TextToSpeech Converter
	SmsManager
	Exercise:
	SQLite and Android
	SQLite architecture
	Exercise:

